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ABSTRACT

In recent concept development and research effort on Unmanned Arial System (UAS) Traffic

Management (UTM) and urban on demand mobility (ODM), electric Vertical Take-off and Landing

(eVTOL) operations for cargo delivery and passenger transportation need to constantly check if

their mission can be successfully completed given the current battery power supply. This onboard

or ground-based mission evaluation algorithm is necessary because (1) eVTOL aircraft run on

limited battery power; and (2) eVTOL aircraft are usually light weighted so they are subject to

wind uncertainties in low-altitude airspace. In this work, the plan is to create an equivalent circuit

model (ECM) that best represents the battery pack of a UAS, and then use flight testing to validate

the accuracy of that model. Additionally, the ECM will be used to predict the UAS’s ability to

complete a specific flight plan successfully. The expected significance of this research is to provide

an online framework to constantly monitor and predict battery behavior for mission assessment,

which is critical for low-altitude eVTOL operations.
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CHAPTER 1. INTRODUCTION

1.1 Background

Electric Unmanned Arial Systems (UAS) have received significant attention in recent years.

They are being deployed in a variety of areas like agriculture, cargo delivery, surveillance, and on-

demand mobility (ODM). The FAA projects a rise in sales of UAS used for commercial purposes

from 600,000 in 2016 to 2.7 million by 2020 [1]. This significant increase supports the necessity of

developing a low-altitude UAS traffic management (UTM) system to help enable safe and efficient

small UAS (sUAS) operations in this specific airspace. A UTM system should be designed to

have certain major inputs, which include flight plans of the UAS aircraft, trajectories of the UASs,

weather forecast, and airspace/terrain constraints, such as no-fly zones and airport restrictions [2].

NASA has initiated collaborative efforts with multiple government entities, industry, and aca-

demic institutions in order to pave the way for the development of UTM [2]. The main focus of the

collaboration has been on sUAS operations, which include, but is not limited to, cargo delivery pro-

posed by Amazon and Google [3, 4]. Since 2016, the possibility of urban ODM has been explored by

NASA, Uber, Airbus and university researchers [3, 4, 5, 6, 7]. Most of UTM and ODM operations

are based on Electric Vertical Take-Off and Landing (eVTOL) aircraft, where the battery runs on

limited power and wind can have a huge effect in low altitude airspace due to the fact that they’re

mostly lightweight. In a huge number of eVTOL, the propuslion system is purely electrical. A few

groups such as NASA Ames [8, 9] have worked on real-time estimation of battery state-of-charge

and prediction of future power demand for fixed-wing aircraft.

1.2 Motivation

It is important to be able to assess a UAS’s ability to successfully complete a mission given a

specific flight plan. Figure 1.1 shows a use case where a package is being delivered from a warehouse
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Figure 1.1: Use case

to a specified destination using the flight plan drawn. It is essential to ensure that the UAS has

sufficient power in its battery to complete the mission. The inability to successfully complete the

mission could have damages on the UAS as well as the surroundings, and that can be quite costly.

The ability to predict whether or not a UAS has enough power left in the battery to complete a

specific flight plan is critical in low altitude airspace.

1.3 Contributions

The main contribution of this work is the creation of an equivalent circuit model that best

represents a cell of the UAS, and then extend that model to represent it on battery pack level.
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Figure 1.2: DJI Phantom 3 Standard

Figure 1.3: DJI Phantom 3 Standard cell

As a proof of concept, the equivalent circuit model is then validated with the aid of flight testing

data of the UAS. Lastly, an extra step is taken to use the equivalent circuit model to predict the

UAS’s ability to complete a specific flight mission.

1.4 Electric Vehicle Background

The vehicle used for the purpose of this work is the DJI Phantom 3 Standard, which has the

largest market share [10]. With the aid of the DJI developer kit, current and voltage profiles of

missions can be archived and save for analysis purposes [11]. This will prove to be vital for the

state estimation algorithm described in section 4. The DJI Phantom 3 Standard has 4 cells all

connected in series, with nominal voltage of 3.8 V per cell and nominal capacity of 4.480 Ah. The

DJI Phantom is shown in figure 1.2 and the cell is shown in figure 1.3.
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CHAPTER 2. BATTERY MODELING

This chapter will provide an in-depth analysis of common electronic elements and how to create

a circuit that has similar behaviorial properties as the observed cell. Such circuit is referred to as an

equivalent circuit model (ECM). ECMs give insight on how cells function under different loads and

dynamic changes. When choosing an ECM to represent the observed cell, it is very important to

balance between the circuit complexity, that will lead to unnecessary computational complications,

and the modeling accuracy. ECMs have been extensively studied and applied to develop a battery

management system. Additionally, Lithium polymer batteries have been widely modelled using

ECMs [12]. Once the ECM of one DJI Phantom 3 standard cell is designed, the complete battery

can be modeled by placing 4 cells in series. It is important to note that it has been assumed that

all 4 cells are identical to simplify the process.

2.1 Circuit Topology

It is essential to make sure that the circuit topology chosen closely matches with the charac-

teristics and the dynamics of the cell observed. The cells of the DJI Phantom 3 Standard are

Lithium-Polymer with limited knowledge of internal chemistry.

2.1.1 State of charge dependence

Typically, the voltage of a fully charged Lithium-Polymer cell is higher than that of a discharged

cell. This can be captured by relating the open-circuit voltage (OCV) to the state of charge (SOC)

[12]. For the DJI Phantom 3 Standard cell, it is defined to be at 100% SOC when it is at 4.25 V and

0% SOC at 3.0 V. This will help in determining the OCV-SOC relationship needed in parameter

estimation algorithm.
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Figure 2.1: Example of a single pulse discharge

2.1.2 Resistance in series

Whenever a certain load is applied, the the cell’s terminal voltage should drop below the open

circuit voltage. In order to capture that phenomena, a resistor is placed in series with the voltage

source. In general, the resistance would be dependent on the current and state of charge. For the

purpose of this work, it will be assumed constant.

2.1.3 R-C circuits

When representing Lithium-Polymer cells in an ECM, Resistor-Capacitor circuits are an essen-

tial component. This is due to the fact that the number of R-C pairs determines the ability of the

ECM to match with the measured responses from the cell testing [12]. To determine the number

of R-C pairs that will be sufficient to well represent the observed cell, a single pulse discharge test

followed by a relaxation period is performed and analyzed [12]. The relaxation period is then fitted

into exponential equations of orders 1 and 2 that represent 1 R-C pair and 2 R-C pairs respectively.

The fitting was done using MATLAB’s Curve Fitting Toolbox.
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Figure 2.2: Fitted data for 1 RC Figure 2.3: Fitted Data for 2 RC

Table 2.1: Comparison between the two fits

R-C Pairs SSE R2 RMSE

1 0.0533 0.03273 0.001038

2 0.1666 0.7534 0.005243

Figures 2.2 and 2.3 show the results of the fitting algorithm for 1 R-C and 2 R-C pairs respec-

tively. Table 2.1 show the comparisons between the two fitted curves. The 1 R-C pair has a lower

sum of squared error and root mean squared error. This finding proves that 1 R-C pair provides a

better representation of the observed cell than 2. 3 R-C and 4 R-C pairs were not investigated due

to the fact that it adds a higher degree of complexity when it comes to the parameter estimation

of the ECM and does not produce significant improvement in modeling accuracy.

2.1.4 Hysteresis voltage

So far, the ECM has a resistor, an open-circuit voltage, and a R-C pair all connected in series.

With this circuit, if the current drops to zero, the voltage across the resistor in series drops to zero,

and the voltage of the capacitor will exponentially drop to zero over time. This is not representative
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Figure 2.4: Final equivalent circuit model

of the observed cell, as its voltage may drop to a value considerably different than the open-circuit

voltage, and this voltage drop is dependent on the cell’s operation history. This phenomena is

known as hysteresis [12].

The final ECM of the observed cell is shown in figure 2.4. As described in previous sections,

the open circuit voltage is a function of SOC, and a single R-C pair is connected in series with a

resistor and a hysteresis voltage. The final equation of the ECM is given by equation 2.1.

Vout = OCV (SOC)− i0R0(SOC, i)− i1R1(SOC, i)−MHyst (2.1)

2.2 Cell Testing

Now that the topology of the ECM has been decided, it is important to conduct different types

of tests on the observed cell to be able to estimate its parameters. These parameters are estimated

by using the data from the tests, and fitting them into the model of equations that are representa-

tive of the ECM.
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Figure 2.5: Battery testing system

The battery testing is performed at Iowa State University, in the System Reliability and Safety

Laboratory located at the Mechanical Engineering department. The Battery Testing System is of

model Neware BTS5V6A, with a power of 448 W, a voltage measurement range of 10 mV — 5V,

and 12 mA — 6 A for both charging and discharging. This system can control a cell’s current

according to a user-fitted profile of applied current versus time, and in return records the cell’s

current and voltage. The test must be conducted in a temperature-controlled environment. The

system can simultaneously perform tests on 8 different cells.

2.2.1 Static testing

A static test is conducted to determined the open-circuit voltage (OCV) as a function of state-

of-charge (SOC). Before beginning the test, it is essential to ensure that the observed cell is fully

charged, and if not, that is fully accounted for in the test script.
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Figure 2.6: Example of a static cell test

2.2.1.1 Static testing script

1. Fully charge the cell to 100% state-of-charge and place it in a temperature-controlled chamber

2 hours before the test to ensure the temperature is uniform.

2. Discharge the cell at a constant current rate of C
30 until the voltage across the cell reaches its

lower cut-off voltage of 3.0 V.

3. Charge the cell at constant current rate of C
30 until the voltage across the cell reaches its

upper cut-off voltage of 4.25 V.

4. Use the voltage data from slow-dicharge/charge test to determine the open-circuit voltage of

the cell.
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Figure 2.7: Example of a dynamic cell test

2.2.2 Dynamic testing

A dynamic test is conducted to determine the remaining equivalent circuit parameters. Before

beginning the test, it is essential to ensure that the observed cell is fully charged, and if not, that

it is fully accounted for in the test script. An example of such test is shown in figure 2.7.

2.2.2.1 Dynamic testing script

1. Fully charge the cell to 100% SOC and place it in a temperature-controlled chamber 2 hours

before the test to ensure the temperature is uniform.

2. Discharge the cell at a constant current rate of C
50 (different c-rates are used) until the the

cell loses 10% of its capacity.

3. Allow the cell to relax for a specified period of time.

4. Carry out dynamic profiles over SOC range of 90% to 10%.
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Figure 2.8: Voltage vs. Capacity for charging, discharging, and average

5. Charge the cell at a constant current rate of C
50 until voltage across the cell reaches its

maximum.

2.3 Circuit Parameter Estimation

2.3.1 Open circuit voltage/state-of-charge relationship

From conducting a full charging/discharging static test on the cell observed, the open-circuit

voltage/state-of-charge relationship is determined as follows:

• Observe how the voltage changes with respect to capacity for the charging and discharging

cycles respectively.

• Compute an average between both observations as shown in figure 2.8.

• Use the final averaged voltage-capacity result to compute the depth of charge at each time

step t:

DOC(t) =
Q(t)

QTotal
(2.2)
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Figure 2.9: Final OCV vs SOC relationship

• SOC at each time step is then computed by:

SOC(t) = 1−DOC(t) (2.3)

• The final OCV and SOC plot is shown in figure 2.9

2.3.2 Remaining ECM parameters

The objective of the parameter estimation algorithm is to obtain a set of parameters that can

be used in model to best predict a certain behavior. In this case, the parameters will be used in

the ECM to predict voltage response of a cell with a given stimuli; the controlled current input.

The accuracy of the prediction will be the criteria for determining the parameters. The root

mean square error (RMSE) between predicted and measured voltage will be used to determined

the accuracy of the prediction. Since no analytical solution of the best parameter values can

be acquired, stochastic algorithm is applied to get the best estimates of those parameter values.

Particle Swarm Optimization (PSO) is used for the purpose of this estimation. The algorithm will

start with reasonable guesses of those parameters since boundaries can be set for the parameter
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values given prior knowledge of the cell exists. The algorithm will then search in the parameter

space and try to minimize the defined cost function. When a minimum of the cost function is

reached, the algorithm will stop and give you a set of ’best-fit’ parameters.

2.3.2.1 Particle Swarm Optimization

Algorithm 1 Particle Swarm Optimization

1: Start with a population of particles and choose a random value for positions and velocities in

search space

2: while Termination condition not reached do

3: for Each particle i do

4: Calculate the velocity of the particle

5: Update the position of the particle

6: Evaluate the fitness of Particle f(
−→
X i)

7: if f(
−→
X i) < f(

−→
P i) then

8:
−→
P i ←

−→
X i

9: end if

10: if f(
−→
X i) < f(

−→
P g) then

11:
−→
P g ←

−→
X i

12: end if

13: end for

14: end while

PSO is a stochastic optimization algorithm that uses population based approach to find the

global minimum. Algorithm 1 shows the details of how the PSO algorithm works [13]. f(
−→
P i)

is best fitness value for particle i. Pg is the particle with the best fitness value of all particles.

The algorithm will terminate when the function tolerance is less than or equal to 1× 10−6. The

population size for this problem was set to 60. The measure of fitness of this problem is the objective

function defined in 2.4.

2.3.2.2 Optimization Problem Formulation

PSO requires a definition of the variables, objective function, and constraints of the parameter

estimation problem.
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Variables

1. x1 : the resistance of the resistor in series R0.

2. x2 : the time constant of the RC circuit τ .

3. x3 : the resistance of the RC circuit resistor R1.

4. x4 : the hysteresis factor itea.

5. x5 : the factor multiplied by the hysteresis voltage M .

6. x6 : the constant multiplied by the sign of the current M0

Optimization Model

min

√∑n
t=1(Vm − Vs(x1, x2, x3, x4, x5, x6))2

n

s.t. 0.00 ≤x1 ≤ 1.00

10.00 ≤x2 ≤ 2000

0.00 ≤x3 ≤ 2.00

−1.00 ≤x4 ≤ 1.00

−∞ ≤x5 ≤ +∞

−0.01 ≤x6 ≤ 0.01

(2.4)

where Vm is the measured voltage from the dyanmic testing, n is the length of Vm vector, and Vs

is simulated voltage given by equation 2.1.
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Table 2.2: Estimation results

Test R0 τ R1 Itea M M0

1 0.00756 111.114 0.0389 -0.0084 12.1153 0.0100

2 0.00965 150.457 0.0487 -0.0091 26.4412 0.0100

3 0.00458 110.983 0.0583 -0.0088 29.3275 0.0100

4 0.00634 108.631 0.0377 -0.0056 12.3261 -0.0100

Figure 2.10: Optimality convergence for all tests

2.3.2.3 Results

Four different types of dynamic tests were conducted on the observed cell to be used in parameter

estimation algorithm:

1. 1.3 C pulse discharge followed by a 1 hour relaxation period.

2. 1 C pulse discharge followed by 1 hour relaxation period.

3. 0.5 C pulse discharge followed by a 1 hour relaxation period.

4. 0.3 C pulse discharge followed by a 1 hour relaxation period.
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Figure 2.11: 1.3 C, 1 hour relaxation

Figure 2.12: 1 C, 2 hour relaxation
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Figure 2.13: 0.5 C, 1 hour relaxation

Figure 2.14: 0.3 C, 1 hour relaxation
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The results of the parameter estimation of each of the four tests are shown in table 2.2. The

optimization algorithm for each of the four tests resulted in close estimations of the parameters,

which concludes the accuracy of the approach and the parameters. If the cell’s performance is

stable, then the parameter optimization results should be similar for different tests. In this case,

the parameters from each of the tests are close, so averages are taken in order to determine the

final equivalent circuit model parameters.

Figure 2.10 shows the error in Volts between the global minimum of f(x) and the minimum

found at each iteration for all the four tests. The results from figures 2.11, 2.12, 2.13, and 2.14

clearly show how accurate the parameter estimation algorithm is as the simulated voltage response

matches closely with the measured voltage from the testing.
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CHAPTER 3. POWER DEMAND MODELING

This chapter will describe how the power demand profile for a specific flight plan can be predicted

from the specific flight plan and prior knowledge of the dynamics of the quadrotor.

3.1 Performance data

The DJI Phantom 3 Standard has a set of performance data that are important for the imple-

mentation of this algorithm shown in table 3.1.

3.2 Dynamics Model

For the purpose of this study, only forward flight will be considered. This means that there

will be no ascend/dcesend phases incorporated in the analysis of the power demand. Using the

dynamic model in [14]:

T sin θ −Dcosγ = 0 (3.1)

dVh
dt

=
T cos θ −D sin γ −mg

m
(3.2)

where α is the angle of attack, θ is the pitch angle of the vehicle, and γ is the flight path angle.

3.2.1 Momentum theory for forward flight

Since this work will only examine forward flight, it is critical to capture the dynamics of such

flight accurately. For a quadrotor, the induced velocity vi is [15]:

vi =
v2h√

(v∞cosα)2 + (v∞sinα+ vi)2
(3.3)
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Table 3.1: Performance Data of DJI Phantom

Performance Data Value

Weight (Battery & Propellers Included) 1380 g

Max horizontal speed 16 m/s

Rotor disk area 0.0452 m2

Vehicle Frontal Area 139× 10−4m2

where vh is the induced velocity at hovering, α is the angle of attack, and v∞ is the steam velocity.

Since vi is on both ends of the equation, computational methods are needed to solve it [15].

PTotal =
1

ηP

1

ηe
TTotal(v∞ sinα+ vi) (3.4)

ηP = 0.7652 (3.5)

ηe = 0.85 (3.6)

where ηP and ηe are the propeller and power conversion efficiencies respectively, which have been

referenced from [8]. The main reason these inefficiencies are added to the model is to reinstate

that the predicted power demand will always be lower than the actual power required by the UAS.

Since the blades are of a finite number, as opposed to the assumption of infinite number of blades

in momentum theory, the tip will always produce vortices, and that leads to a flow that is not a

linear laminar flow, which is accounted by ηP . Additionally, the power produced by the motor will

not be fully transformed into the rotor due to mechanical inefficiencies, and that is accounted by ηe.

The underlying work to account for these inefficiencies have been discussed in details in Chapter

Two of [16].

3.2.2 Drag model

Since only forward flight will be considered for this study, the drag model, shown in equation

3.7 is only one dimensional and is along the horizontal path. Only parasite drag will be considered
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for the purpose of this work [14].

D =
ρv2∞CDFA

2
(3.7)

where ρ is the density of air at the specified altitude, CD is the drag coefficient of 1.0, and FA is

the frontal area of the UAS.
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CHAPTER 4. MISSION ASSESSMENT

This chapter will explain the flight testing conducted on the DJI Phantom 3 Standard, which

will be an essential component in the state estimation algorithm. Additionally, this chapter will

explain how the online prediction algorithm works.

4.1 Flight Testing

Upon starting the DJI GO application, a connection is established with the Phantom and data

is recorded (current, voltage, GPS coordinates, and velocity in all three axis). This file is stored

locally on the device, and can be accessed from device settings or by connecting to a computer.

The user may then input, using the interface of the application, the parameters for the flight.

From here, a series of way points along the path is computed to match those parameters. These

way points are then combined into a mission and uploaded to the Phantom 3 Standard before the

flight is started. This was done using the DJI mobile SDK. The DJI mobile SDK appears to prevent

multiple active connections across applications (i.e. the inability to use DJI GO and SDK at the

same time). Instead, switches can be made between the two by exiting and terminating the other.

The flight test conducted on the DJI Phantom 3 Standard consisted of two way points as shown

in figure 4.1, where the UAS continuously performs back and forth laps until the battery drains.

4.2 State Estimation

After conducting the flight testing and archiving the voltage and current profiles, they will be

used to validate the accuracy of the equivalent-circuit model as shown in figure 4.2. The current

profile from the flight testing is fed into the ECM, which will output an estimated voltage profile

that will then be compared to the real voltage profile from the flight testing. Additionally, the state

of charge profile will be estimated.
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Figure 4.1: Flight plan

Figure 4.2: Estimation algorithm

4.2.1 Estimation Results

Figure 4.3 shows the current profile for the flight test conducted. From figure 4.4, the difference

between the simulation and flight testing is about 0.05 V, which is quite accurate considering the

assumptions that were reinstated in the ECM.

Figure 4.5 shows how the SOC changes with time using the estimation algorithm. It is important

to note here that the estimation of the SOC doesn’t reach zero, and that is representative in the

fact that DJI Phantom 3 Standard has to terminate the mission and return to home when the

battery charge is at 10%.
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Figure 4.3: Current profile

Figure 4.4: ECM-simulated voltage vs. measured voltage during flight test
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Figure 4.5: Estimated SOC vs. flight time

4.3 Online Prediction

Now that the equivalent circuit model has been validated with the flight testing, and the accu-

racy was within 0.05 V, it can be then used to predict the ability of a UAS to complete a specific

flight plan. Figure 4.6 explains how the online prediction algorithm works. From a specific flight

plan, and having prior knowledge of the dynamics of the UAS, the future power demand can be

estimate as described in chapter 3, which can be then fed into the ECM to get voltage and SOC

profiles. It is critically important to define a cut-off voltage, after which the battery no longer has

any energy left. For the DJI Phantom 3 Standard, the cut-off voltage was assumed to be 12 V.

Figure 4.7 explains in details how the voltage can be estimated from the power demand profile.

Assuming prior knowledge of the initial states (Vout,1, OCV1, SOC1, and i1), the SOC at the second

time step (SOC2) can be estimated by:

SOC2 = SOC1 +
i1∆t

Q
(4.1)
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Figure 4.6: Prediction algorithm

where ∆t is the time difference between the two steps, and Q is the total charge of the cell. The

corresponding OCV2 can be found from the SOC-OCV relationship determined in chapter 2. Vout,2

can be then determined from the ECM with equation 2.1. The current at the next step is then (i2):

i2 =
P2

vout,2
(4.2)

This is an iterative process that will cover the whole power demand profile.

4.3.1 Case Study

A case study is created to help validate the the online prediction algorithm. The DJI starts from

a hovering position, then accelerates to 10 m/s, moves forward at constant speed for a specified

period of time, then decelerates back to zero as shown in figure 4.8. Using the equations and

dynamics model defined in chapter 3, the power profile for the case study is shown in figure 4.9.
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Figure 4.7: Voltage profile from power demand

Figure 4.8: Case study
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Figure 4.9: Estimated power demand

Figure 4.10: Voltage profile of case study

Using the equivalent circuit model, the voltage and SOC profiles are then predicted. Figures

4.11 and 4.10 show the results of that prediction.
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Figure 4.11: SOC profile of case study

As can be deduced from figure 4.10, the cut-off voltage of 12 V was reached at around 18.1825

minutes, which means that the DJI does not have enough power to complete this specific flight

plan. Even though this case study has not been validated, it has a logical basis to it as the average

time of the DJI Phantom 3 Standard is around 18 – 25 minutes. Additionally, the SOC profile

confirms that the mission ends at 18.1825, because at that time instant the predicted SOC is 0%.
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CHAPTER 5. CONCLUSION AND FUTURE WORK

In conclusion, this work presents a framework to be able to assess a UAS’s ability to complete a

flight plan. This work outlines how to choose the topology of the ECM with the aid of curve fitting

of some cell testing data. Additionally, this work shows how dynamic and static cell testing data

is used to help estimate the parameters of the ECM with the aid of Particle Swarm Optimization.

Once the ECM has been created and the parameters have been estimated, validation was necessary

to ensure the accuracy of the model; flight testing was used for that purpose, as voltage and current

profiles were archived. The voltage profile from the flight testing is then compared to that from the

estimation algorithm proposed in this work. The accuracy between both was within a maximum

difference of about 0.05 V. Furthermore, the online prediction algorithm discussed was accurate to

a certain extent, where the cut-off voltage was reached at around 18.1 minutes, which is within the

time range of the DJI Phantom 3 Standard.

There were a lot of assumptions made in this work that could result in the inaccuracies present

thus far. Firstly, the analysis was only done on one cell, and all the other cells were assumed to be

identical. This may not be an accurate representation as cells might behave differently in the UAS.

Furthermore, there was no previous knowledge of the cell’s chemistry, which could’ve been helpful

in understanding how it acts under different dynamic loadings. The work here can be extended

by predicting the Remaining Useful Time (RUT) as a function of the flight operation time for

a specific UAS. This relationship better represents the ability of a UAS to successfully finish a

mission. This work can be significant in low altitude airspace operations, as it can assess a UAS’s

ability to successfully complete a mission by constantly predicting the battery behavior.
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